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1.  Classification of Global Topological and Geometric Quantum Phases 
 

The notion of a global topological or geometric phase was introduced in quantum 

mechanics by Sir M. Berry in 1984 [1, 12]. Indeed, all typical global quantum mechanical 

observables are measured in terms relative phases obtained by interference phenomena. These 

phenomena involve various splitting and recombination processes of beams whose global 

coherence is measured precisely by some relative phase difference. A relative phase can be 

thought of as the physical attribute measuring the global coherence between two histories of 

events sharing a common initial and final point in the space of some control variables of the 

dynamical evolution of a quantum system, parameterized implicitly by some temporal 

parameter. For example, we may think of the simplest case of a beam which is split into two 

beams propagating for a period of time and finally recombined. Their interference is always 

measured by a global relative phase difference. 

As mentioned above, it was Sir M. Berry who first formulated a general mechanism 

depicting the generation of an experimentally observed global phase factor of a geometric or 

topological origin. It has since been shown that a quantum system undergoing a slowly 

evolving (adiabatic) cyclic evolution retains a “memory” of its motion after coming back to 

its original physical state. This “memory” is expressed by means of a complex phase factor in 

the wave-function (state vector) of the system, typically referred to as the “Berry phase” or 

simply the geometric phase. The cyclic evolution, which can be thought of as a periodicity 

property of the state vector of a quantum system, is driven by a Hamiltonian bearing an 

implicit time dependence through a set of control variables. For instance, we may think of 

external electric or magnetic fields which define the Hamiltonian parametric dependence of a 

charged particle. The adiabatic condition defines a constraint of parallel transport specified by 

the requirement that the implicit time dependence of the Hamiltonian is sufficiently slow so 

that the state vector stays in the eigenspace of the same instantaneous eigenvalue of the 

Hamiltonian.  

Intuitively, once the state vector is prepared in an instantaneous eigenstate of the 

Hamiltonian with an eigenvalue which is separated from the neighboring eigenstates by a 

finite energy gap, then it remains there during its transport within a finite temporal period. We 

may think of the space of control variables as a slowly varying environment with respect to 

which a state vector (eigenvector of the Hamiltonian localized at the corresponding 

eigenspace) displays a history dependent geometric effect: When the environment returns to 

its original state, the system also does, but for an additional global geometric phase factor. 

Due to the implicit temporal dependence imposed by the time parameterization of a 

closed path in the environmental parameters of the control space, this global geometric 

phase factor is thought of as “memory” of the motion since it encodes the global 

geometric or topological features of the control space.  
The Berry phase is a complex number of modulus one and is experimentally 

observable. The two most important features regarding the experimental detection of a 

quantum global phase are [i] that it is a statistical object, and [ii] it can be measured only 

relatively. Thus it becomes observable by comparing the historical evolution of two distinct 

statistical ensembles of systems through their interference pattern. The Berry phase is 

geometric or topological because it depends solely on the topology or geometry of the control 

space pathway along which the state vector is transported. It does not depend on either the 
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temporal metric duration of the evolution or on the particular dynamics that is applied to the 

system. 

The important conceptual lesson to be learned from the experimental discovery of 

Berry-type phases is that although quantum mechanics may be locally interpreted in terms of 

probabilities of events (so that phases do not play any role), globally it is the relative phase 

differences between histories of events that have the major physical significance. Failure to 

recognize this subtle point focusing on the distinctive role of the topologically local and 

global levels of quantum mechanical description in relation to physical observability and 

information has caused enormous interpretational problems. These problems, in turn, 

have become the central impediment to the development of viable technological 

applications of quantum mechanical phenomena.  
 

 

 

 

 

 

 

 

 

 

 

A sheaf is an algebraic-topological object depicting the integration of local structural 

information into an induced global structure over some base space of control variables—the 

topological ‘gluing conditions’ generative of a global topological covering structure of 

families of local reference frames. In general, a sheaf may be thought of as a continuously 

variable relational information structure, whose continuous variation is considered over 

specified local covering frames interlocking together non-trivially.  

To date, our conceptual and technical scheme is the only one which specifically 

predicts the appearance of global topological phase factors without any additional ad hoc 

hypotheses (like the adiabatic hypothesis). This is due to the fact that the concept of a sheaf, 

on which our scheme is based, explicitly incorporates the distinction between global and local 

information carriers as well as their concrete internal relations in contradistinction to all 

other interpretations of quantum phase phenomena. The key modeling notion of a quantum 

information sheaf leads to the following principle central to the understanding of the origin of 

global phase factors: Whenever a global information totality is partitioned into local relational 

parts—i.e., whenever they are localized contextually with respect to particular information 

carriers (forming a covering system parameterizing this totality)—and one attempts to 

describe some part in isolation from an environment of other parts (e.g., in a conventional 

quantum measurement interaction, where a measured system is practically considered isolated 

from its environment), the connectivity between the global environment and local measured 

system (due to fact that they are topologically glued together in the same global totality)  is 

manifested as global observable phase factors of a  topological or geometric origin.  

Our sheaf-theoretic framework uniquely provides a clear demarcation of the minimum 

physical requirements for the qualification and quantification of all global relative phase 

phenomena as follows: [i] The local gauge freedom of each localized part with respect to 

What has been lacking, until now, is a coherent, consistent theoretical framework which 

describes the internal topological relations between the local and the global level of 

quantum mechanical descriptions of phenomena, so that these are not ad hoc or disjoint.  

In our recent book Foundations of Relational Realism: A Topological Approach to 

Quantum Mechanics and the Philosophy of Nature [2] we have developed precisely such a 

scheme (see also [17, 18, 19]), which is formulated mathematically in the category-

theoretic language of sheaf theory [3, 6, 7]. 
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some symmetry condition (like the local gauge freedom of the phase of a state vector), which 

leads to its theoretical representation as a fiber or stalk of an information sheaf; [ii] The global 

constraints or obstructions imposed by the topological structure of the base space of control 

variables. These can be quantified by means of closed paths (loops) and their generalizations, 

which probe these global constraints by topologically bounding them—e.g., by encircling a 

hole or an impurity or an inaccessible region. All different types of loops can be classified in 

terms of homotopy-theoretic global invariants; [iii] The encoding of this global information in 

differential extensive terms so that it can be accessed inductively by using local information 

carriers and their interlocking properties—e.g., by solving partial differential equations; [iv] 

The non-trivial topological information of global significance is measured (after the 

differential encoding in terms of the local carriers) via an integration procedure of an 

associated differential gauge potential (technically referred to as a ‘connection’), which acts 

along a constraint-bounding contour (for example a closed path or loop) and which is 

implicitly parameterized by a continuous temporal parameter; [v] The gauge potentials 

incorporate the connectivity properties of information from the local to the global level in 

differential terms. The gauge character expresses the allowed local contextual variability or 

freedom of a potential with respect to some global topological constraint; [vi] The global 

invariant topological information is finally measured and expressed in terms of global 

(an)holonomy phase factors induced by integration of differential gauge potentials along 

constraint-bounding contours. 

The next major theoretical challenge is the classification of all possible global 

topological or geometric phase factors. This task is of crucial significance for the 

technological applications of global phase phenomena in condensed matter physics, 

electronics and quantum computing. From the perspective of our theoretical scheme, which 

is based on the concepts and principles of differential sheaf theory according to the above 

brief exposition, the natural methodology is provided by the analytic technique of sheaf 

cohomology. For this reason, we propose that sheaf cohomology is the appropriate 

technical device for the complete classification of all global phase phenomena, creating 

astonishing prospects of concrete technological applications backed up by a solid 

mathematical model instead of various phenomenological simulations involving 

unnecessary or even unphysical and unrealistic hypotheses.  
 

 

 

 

 

 

 

 

 

Sheaf cohomology can be best thought of as a method of assigning global invariants to 

a topological space of control variables (or more generally to a categorical covering scheme 

called a site) in a homotopy-invariant way. The sheaf cohomology groups measure the global 

obstructions for extending information represented in terms of sheaf sections from the local to 

the global level (for example extending local solutions of a differential equation to a global 

solution).  
 

The conception of this project is original and its primary innovation centers on the idea of 

applying the powerful methods of sheaf cohomology for the complete classification of 

global phase phenomena over topological spaces of control variables bearing highly-non-

trivial topological information, which can be subsequently used for technological 

purposes. This project will thus contribute substantially to the creation of new knowledge 

related to technological applications of topological phases as an efficient mechanism for 

coding global information, which can be accessed and processed by local means. 
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2. Technological Application of Global Quantum Phases: 
Superconducting Topological Insulators 

 

The particular significance of the concepts of relative topological and geometric 

phases in quantum mechanics from the viewpoint of our theoretical scheme is that they mark 

a distinctive point in the history of science, where for the first time the significance of global 

observables or global information carriers as distinct entities from local observables is 

realized and made explicit through precise physical models—models which have found 

concrete experimental applications.  

The most exciting current applications of the discovery of global topological phase 

factors encoding the information of global topological invariants in the structure and 

emergence of various materials come from condensed matter and solid state physics.  

 

 

 

 

 

 

 

More precisely, while the interior of topological insulators prevents the flow of 

electrical currents, their edges or surfaces allow the movement of charges. Most important, 

the surfaces of topological insulators enable the transport of spin-polarized electrons while 

preventing any scattering effects resulting in dissipation. Because of these characteristics, 

topological insulators hold great potential for use in future transistors, memory devices 

and magnetic sensors that are highly energy efficient and require less power. It is 

instructive to think of these materials as crystals being able to conduct electrical current on 

their surfaces, while acting as insulators throughout the interior of the crystal. Thus, a 

topological insulator always has a metallic boundary when compared to an ordinary insulator. 

These metallic boundaries originate from global topological invariants, which are not 

sensitive to any continuous small perturbations caused for instance from thermal fluctuations, 

as long as a material remains insulating.  

In our Foundations of Relational Realism: A Topological Approach to Quantum 

Mechanics [2], one of the major conclusions has been the theoretical prediction, justification 

and mathematical elaboration of the fact that the understanding of quantum event 

structures and quantum information requires a conceptual shift in our thinking of the 

notion of extension from the metrical order to the topological order. It is the topological 

relations between local information carriers and the mutually-implicative role between local-

global levels (captured concretely by the notion of a sheaf), as opposed to the metrical 

relations (on which the conventional quantum formalism is based), that are central to the 

coherent and consistent conceptualization and mathematical modeling of the quantum world. 

It is exciting to realize that this theoretical perspective on the nature and 

functioning of the quantum world has now been experimentally confirmed, and that this 

confirmation has  revolutionized the disciplines of condensed matter physics and solid 

state physics in a way that points to practical technological applications. The major 

purpose of research in condensed-matter physics is to explain from first principles how order 

in matter emerges when a large number of simple constituents, such as ions, or electrons, 

interact with each other. In metrically ordered phases such as those pertaining to crystals and 

Due to the huge potential in the applicability of these new quantum states of matter in 

various technological fields, physics has seen a recent surge of experimental activity 

related to topological states of matter and topological order. These new materials, called 

topological insulators, can act as both insulators and conductors [4].  
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magnets, the order is described via the mechanism of symmetry breaking: for instance the 

order in a crystal is obtained by the symmetry breaking of the Euclidean group of rotations 

and translations of the three-dimensional metrical space, because ions are arranged 

periodically due to their electrostatic interactions. Until the experimental discovery of the 

topological quantum Hall effect, it had been thought that all states of matter could be 

classified in terms of their broken symmetries giving rise to characteristic local metrical order 

parameters. However, this classification fails for the quantum Hall state of matter which is 

classified by a global topological invariant [18]. The quantum Hall effect occurs when a 

magnetic field penetrates a two-dimensional, low temperature conducting sample of electrons, 

and pertains to the quantization of the resulting conductivity of the sample. In this way, the 

quantum Hall state has been the first experimentally observed topological state of matter. 

Topological states with different values of the global topological invariant can agree in all 

symmetries. Thus, topologically distinct matter states cannot be adiabatically (viz. preserving 

the gap among energy levels) deformed continuously to each other as long as they share the 

same symmetries. Thus, the global topological invariant classifying these states of matter 

plays a protecting role being totally unaffected by perturbations and deformations. 

Conclusively, there exists a topological type of order underlying the quantum Hall state 

of matter, which surpasses the old metrical paradigm.  

One of the most important discoveries of the past few years is that a similar type of 

topological order also occurs in some three-dimensional materials, called topological 

insulators or quantum Hall spin states [4, 5, 10].  In the case of topological insulators, the role 

of the magnetic field is assumed by the mechanism of spin–orbit coupling, which is an 

intrinsic property of all solids. In this topological state of matter in three dimensions and even 

at room temperatures, materials can insulate on the inside but conduct on the outside. 

Moreover, the conducting electrons on the surface arrange themselves into spin-up electrons 

traveling in one direction, and spin-down electrons travelling in the other, generating a “spin 

current,” which can have transport properties without dissipation. Thus, the potential 

technological applications of these topological states of matter in electronics and quantum 

computing is enormous. An interesting question is whether it would be possible to simulate a 

topological insulator using light, so that to obtain an optical analogue, called a photonic 

topological insulator. This has been positively answered already in a very recent work [11], 

where the first experimental realization of a photonic topological insulator has been reported, 

which consists of helical waveguides arranged in a honeycomb lattice. 

 

 

 

 

 

 

 

More precisely, it is predicted that the appropriate coupling of the boundary surface of 

a topological insulator to a superconductor can induce a type of “superconducting spin 

current” transporting information without dissipation (i.e., without energy exchange). This 

superconducting information transport is expected to be carried by particular fermionic modes 

called “Majorana fermions” [14], which according to Dirac’s theoretical model would be their 

own antiparticles.  

The next challenge, which is expected to play a major and catalytic role in quantum 

computing and spin electronics is the theoretical investigation and practical 

implementation of hybrid organization quantum material structures. One of the most 

promising among them is the superconducting topological insulator [4, 5], which involves 

the coupling of a superconductor with a topological insulator.  
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 According to our model, global topological invariants are encoded in terms of global 

topological phase factors (memories) in the states of the corresponding fermionic modes. 

Theoretically they are obtained if we consider the structure of a sheaf, which relationally 

localizes the fermion eigenstates with respect to some base space of control parameters, which 

depend implicitly on time. In solid state physics, the localizing space of control parameters is 

considered to be the momentum space (Brillouin zone), so that the energy spectrum has a 

band structure, meaning that it is piecewise continuous. Thus, we expect that different bulk 

topological constrains of a topological insulator would lead to different types of 

“Majorana fermions” with respect to the kind of quantum memory they carry. In this 

manner, the understanding and implementation of superconducting topological insulators 

requires a topological classification in three dimensions of the quantum memories of these 

fermionic modes in relation to the variability of the possible topological constraints of the 

localization space of control variables. The crucial point is that this classification is relevant to 

the coupling of a superconductor with a topological insulator if and only if it refers to 

interacting fermionic modes and not to the free case, which is currently addressed in the 

literature [4, 5].  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

The proof of existence of “Majorana fermions” would be a tremendous scientific 

achievement with amazing technological applications; for example they could play the role 

of quantum bits in a solid state implementation of quantum computing. We may think of 

these fermionic modes as vortices on the surface with a memory of their topological 

localization relative to all other vortices, such that it becomes theoretically possible to 

implement all quantum computing operations by controlling the relative topological 

localization properties of these vortices. To this end, we propose to apply our sheaf-

theoretic model of classification of global topological phases in order to gain a deep 

understanding of [a] the nature of coupling between a superconductor and a topological 

insulator,  and [b] of the origin of the dissipationless surface superconducting current 

induced by this coupling. 

For this purpose, we propose the application of sheaf cohomological methods in order to 

tackle this problem. This is a novel approach to the subject of superconducting 

topological insulators and interacting topological states of matter in general, since the 

powerful concepts and methods of sheaf theory have not been considered at all in this 

discipline. At a further stage of development, this research directly addresses the 

problem of interactions and strong correlations pertaining to topological states of 

matter, which could potentially lead to a substantial revision of the Standard Model 

of field interactions. 
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3. Applications of Global Topological Phases to Quantum Information Theory 
and Homotopic Quantum Computing 

 

 Quantum information theory and quantum computing must be an integral part of the 

world view of anyone who seeks a fundamental understanding of quantum theory and its 

implications regarding information processing and storing. Although quantum geometric 

spectrums may be locally probed in terms of observables, represented as self-adjoint 

operators, and their corresponding probabilities of events with respect to an orthonormal basis 

of eigenstates comprising a Boolean logical frame, so that local phases do not have any 

measurable significance, globally it is precisely the measurable relative phase differences 

which maintain the quantum coherence information. A global phase factor is not represented 

by any self-adjoint operator, but it is represented by means of an  (an)holonomy unitary group 

element, to be thought of as the accumulated “memory” due to periodicity with respect to an 

environment of control variables. The explicitly different nature of physical information 

carriers as we make the transition from the local to the global level of description of 

quantum geometric spectrums and inversely, requires an adequate quantum 

information processing scheme where this distinction is appropriately modeled. 

 

 

  

 

 

 

Mathematically speaking, according to the Serre-Swan theorem [7], finitely generated 

projective modules, and thus locally free sheaves of modules, called vector sheaves, defined 

over commutative observable algebra sheaves, are equivalent to vector bundles over a 

paracompact and Hausdorff topological base space.  Thus, the set of sections of any vector 

bundle encoding, for example, the physical information of quantum states always forms a 

vector sheaf. We emphasize that a base topological space of control variables serves only as 

the carrier of a bundle geometric spectrum, and in particular it incorporates the local/global 

distinction required for the sheaf-theoretic interpretation of this spectrum. 

In view of the gauge-theoretic nature of quantum geometric spectrums the following 

aspects acquire particular significance: First, in the case of fiber bundle gauge geometry, the 

fiber over each point of a base space represents the local gauge freedom in the local definition 

of a physical information attribute. For instance, the vector space over each point of a base 

topological space of a vector bundle of quantum states represents the local gauge freedom in 

the local definition of a state. Therefore, from a computational viewpoint, each fiber serves as 

a local information encoding space. Second, due to equivalence of vector bundles with vector 

sheaves there should be naturally utilized a sheaf-theoretic computational model of the 

bundle geometric spectrum, and in particular an information attribute at a point should 

be computed in terms of sheaf germs (compatible information equivalence classes) and 

not in a punctual way as it is classically the case. Third, the crucial property of fiber bundle 

gauge geometric spectrums is that they bear the homotopy lifting property, meaning that 

homotopic loops on the base space (loops that can be continuously deformed to each other) 

can be lifted uniformly to the fibers of the bundle.  

 

 

We propose that a natural approach to quantum information processing, which explicates 

precisely the fundamental difference between local and global information carriers, can be 

utilized by applying the theory of vector sheaves equipped with a connection [7, 8, 9].  

 



Foundations of Topological Order - 2016  9 

 

 

 

 

 

 

 

 

 

Homotopy type theory is a currently developing new field of mathematics and logic, 

which interprets type theory not from a set-theoretic, but from a homotopy-theoretic 

perspective [19]. In homotopy type theory one regards the types as spaces and the logical 

operations as homotopy-invariant constructions on spaces. In our case, we propose to consider 

quantum types as fiber bundle gauge geometric spectrums, such that a term of some specified 

quantum type is a germ of the associated vector sheaf. The key new idea of the homotopy 

interpretation in relation to quantum information processing is that the logical notion of 

equivalence of two terms of the same type (interpreted as a form of identity by the univalence 

axiom) is understood as follows: Two terms of the same type are equivalent if there exists a 

path of connectivity between them. From this perspective, quantum information processing 

can be expressed by means of a connection on the associated vector sheaf of a vector bundle 

quantum spectrum. Thus, an integrable connection on the vector sheaf of states of a quantum 

system provides a realization model of homotopic quantum computation. 

The notion of a connection is formulated in sheaf-theoretic terms as a natural 

transformation from the vector sheaf of states (finite rank locally free sheaf of modules) over 

the observable algebra sheaf to the sheaf of vector-valued algebraic differential forms [7]. 

This natural transformation should obey the Leibniz rule, so that in effect can be interpreted 

physically as a covariant derivative of the sections of the vector sheaf of states. The variation 

takes place according to a differential parallel transport rule, which characterizes the specific 

manner of quantum information processing. In this way, the transport constraint on sections is 

expressed by means of a differential equation. The connection can be locally identified with a 

gauge potential according to the paradigm of gauge theories (for example electromagnetism). 

Thus, locally a gauge potential connects two infinitesimally close fibers along an infinitesimal 

path on the base space, and thus can be integrated along a finite extension of this path 

parameterized by a temporal parameter. 

Due to global topological obstructions, the considered finite path extension cannot be 

covered by a single local chart on the base localization space. Hence, we need to consider a 

multitude of overlapping local charts covering the path extension forming a chain. Together 

with each local chart on the base space there is an associated local gauge potential 

representing the global connection with respect to this chart. Thus, we need to define 

compatibility conditions on pairwise overlaps gluing local gauge potentials together. This is 

expressed in terms of transition functions, which establish the transformation rules of the 

local potentials under extension from the local to the global level.  

In this implicitly temporal model of a finite extent path on the base localization space, 

we may consider a closed path by looping the localizing parameters back to themselves 

during some finite time period. A closed path is homotopically non-trivial if it encloses a hole 

(for example an inaccessible region) so that it cannot be contracted continuously to a point. 

This is a clear indication that the proposed sheaf-theoretic quantum computational model 

should operate on homotopy types and not on set types. For this reason, we propose to 

investigate a quantum information processing model in relation to homotopy type 

theory [19], which we call homotopic quantum computing. The conception of this 

project is novel and the interpretation of quantum computation types as homotopy types 

provides a promising way to overcome the current problems of quantum computation 

based on set-theoretic types. 
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Depending on the topological connectivity properties of the base space of parameters, closed 

paths can be classified homotopically by means of global invariants, for example the winding 

number of a loop tracing a circle. This homotopic information can be encoded in terms of a 

group, called the fundamental group of the base space, for example the group of integers for 

the case of the circle. In case that the base space is not simply connected, then there is always 

going to be some global observable phase factor (unitary group element interpreted as a 

memory) of a topological origin, called the (an)holonomy of the connection. 

This topological phase factor is a global information carrier of the quantum 

information processing according to the utilized connection.  More concretely, it is 

derived by integration in the temporal completion of the lifting procedure of a closed loop in 

the base space to the sections of the bundle geometric spectrum according to the connection. 

In particular, if the connection is integrable, then quantum information processing from the 

local to the global does not depend on the particular loop traced on the base space, but only on 

the homotopy equivalence class of such loops.  In this manner, an integrable connection on 

the vector sheaf of states of a quantum system can be thought of as a model of 

homotopic quantum computation, under the proviso that quantum computation types are 

interpreted as homotopy types. 

 

____________________________ 
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